STANDING RIGGING

CHAPTER VIII.

STANDING RIGGING.*

The rigging of a ship consists of a quantity of ropes for the support of the masts, yards and booms.

Each mast is supported from forward by stays, from aft by backstays, and sideways by shrouds. The foremast is supported in a great measure from the bowsprit, therefore the bowsprit has a number of extra stays, called bobstays. These, and such ropes as are stationary, constitute thestanding rigging.

The standing rigging of modern vessels is composed of wire rope, iron wire rope being in general use, although the substitution of steel wire, owing to its greater strength and lightness, can only be a question of time.

Wire rope now in use in the U. S. Navy for standing rigging, is right-handed, of six strands, each strand having an untarred hemp heart, and another heart in the centre of the rope. The individual wires forming the strand are of a size (larger or smaller) corresponding to the full size of the rope.

In the Navy, all wire rope is measured and designated by its circumference, but bridge builders, and others than seamen, often use the diameter to designate the size of wire rope.

Wire rope is reeled for stowage or transportation on strong wooden reels. To take wire rope off a reel, cast loose the outside end, which is secured to the reel, and make it fast to a bolt in the floor or deck. Place the reel on its edges, with the rope end underneath, roll the reel along the floor to a point a little beyond the length required, then clap on a strap and tackle near the reel, leaving enough space between the strap and the secured end to measure off the required length. Haul the rope taut along the floor, place a mark close up to the secured end. Then measure off from the mark at end the number of feet and inches required. Make allowance for end enough to work either for splice or to turn up, and place within an inch of each other two strong bindings or whippings to keep the ends of wire in place when it is sawed off.

* For much of the information concerning wire rigging, our Thanks are due to Boatswain John A. Brisco, U. S. N.


Plate 43, Fig 284. Drawing of Constitution.
Half Breath at Fore Mast to outside of Channel, 20 feet 7 inches.
Half Breath at Main Mast to outside of Channel, 21 feet 2 inches.
Half Breath at Mizzen Mast to outside of Channel, 18 feet 10 inches.

97

If the wire is to be served the full length, it would be better to get it on a stretch before cutting, but if the ends are to be spliced into eyes, then with a hack-saw, kept well oiled, saw the wire in two between the whippings, secure the end of the rope to the reel and put it away.Should it be required to take all the wire from the reel, then the reel will be rolled as far as circumstances admit, back and forth, till all the rope is off. The rope can then be taken up and put on stretch just as it lies upon the floor without taking turns out for stretching.

A piece of 3/4-inch iron chain, about 3 feet long, with a ring in each end, one ring sufficiently large to let the other reeve through it, is the best strap to be used in putting heavy wire rope on a stretch. Plenty of protection should be put on the rope to prevent the chain from injuring the wire. To apply the chain strap, pass a turn around the rope with one end of the strap, and pass the other end through the ring, and jamb it into place by hand. If it is to be a very heavy pull, a half-hitch can be taken, hook on to the unconfined end and heave taut.

Wire rope, not galvanized, is best protected from weather and wear if painted with boiled linseed oil and red lead, well mixed, and filled well into the lays, wormed and parcelled with cotton sheeting, so cut and laid on that the overlapping will give two thicknesses over all the rope, then painted again and served tight and close over all. If properly done, this will keep out water for years.

Cutting Ribbing by Draft. Having an accurate draft of the hull and spars of a ship, Fig. 284, Plate 43, the measures may be readily taken and the rigging cut and fitted so that it can be sent aloft as soon as the masts are ready to receive it. It not unfrequently happens that a gang of rigging is completed and triced up out of the way, in the rigging loft, long before the ship is ready to take it.

Rigging drafts are usually made on an 1/8-inch scale (one-eighth inch-one foot). This scale is most convenient, because the ordinary two-foot rule can be used as well as any more complicated measure, and the drawing made on an eighth scale is of a convenient size. The largest ship will require a sheet of paper not more than 2 1/2 feet by 3 feet.

The half beam at each mast is usually noted on the draft at the respective channels, but the location of dead-eyes seldom, and therefore the rigger must get the measurements from the vessel. As no beam draft is now furnished, an adjustable beam scale, Fig. 287, Plate 45, is employed (which is graduated to the same scale as is the draft) with a sliding rest and set screw. Another adjustable beam scale, Fig. 285, is in the form of a hollow square of metal, graduated on its four exterior sides to different fractional parts of an inch. The sliding rest for the point of the dividers may be applied
7


98

to any one of the four sides to correspond with the scale used in the draft.Before working on the draft scale, measure carefully the square of the mast-head just in line with the upper side of bolster. The measure of the square is used to fit the pendants, but for eyes of the lower rigging, five square of the actual girth measure is used. The mast-heads are rounded for wire rigging, iron or composition plates being let in and secured on each corner of the mast-head to round it off.

Lower Mast-head Pendants. Should be fitted long enough to hang one foot below the futtock band, and both legs are now fitted the same length, with an iron thimble and large link in each end. Fig. 286, Plate 44. The thimble is usually spliced in as close as possible, and for a time it is neat and answers well, but when the service becomes rotten or worn, and requires repairing, the splice is liable to injury in removing the thimble. It would be better to fit the ends with a long eye, so that the thimble can be moved in repairing, and secured in place by a good. seizing. In measuring for lower mast-head pendants, find the distance from top of trestle-tree to one foot below futtock band, add one thickness of trestle-tree, and half square of mast-head, which, doubled, will be the combined length of starboard and port leg; add the half length of the round of thimble or length of eye, and a due allowance of end for splicing. Now paint worm, parcel, paint again and. serve, and double serve with spun-yarn in the place required for the thimble, splice in the thimble, tucking once whole, once two-thirds, and once one-third. Hammer the splice into a smooth taper, and get the pendant on a stretch by hooking tackles into the links; break off the wire ends close into the lays, give the pendant a good painting, worm from and parcel toward, the centre, serve with spun-yarn, and double serve from centre to a distance equal to one-half the mast-head, together with the thickness and depth of trestle-tree.

With tarred flax parcelling head up from nearly the end of the double service to the centre, and marl on with strong marline, the hitches not more than half an inch apart, being careful to leave a space without hitches at the mark for the cross-lashing, which is to be ascertained and marked before the marling is put on. Having the two pendants spliced, served, headed up and carefully marked for the cross-lashing, let down. From the centre mark of each pendant, lay off and mark each way one half the square of the masthead. Take two pieces of wood about three inches wide and one inch thick, equal in length to one square of masthead, lay the two pendants side by side to verify the marks, then spread them apart till the pieces of wood can be placed across and from pendant to pendant, just outside the marks


Plate 44, Fig 285-286. Adjustable beam scale and mast pendant.

99

where the cross-lashing is to go, allowing room to comfortably work the lashing. With a piece of strong seizing stuff with a long eye, proceed to put on a regular round seizing from pendant to pendant, being careful to keep outside of the mark, or the square will be too small to go over the mast-head. Having passed the riding turns of the lashing, secure its end. Then around the cross-lashing close up to the pendants put a good seizing of houseline, being careful to bring all parts of the cross-lashing close together, and marl the lashing together, parcel with thin stuff and woold with a strand, then with tarred flax parcelling protect the lashing, cover well the turns around the pendants and marl all down. Leave the wooden strips in till the pendants are about to be put over the mast-head.A link is put into the end of the pendant because it is so much easier hooked into than the thimble in the stiff wire, alone.

The mizzen pendants being made of smaller rope than the fore and main, can be fitted in the same manner, excepting where they are fitted with a cut splice or spanned to a pair of odd shrouds, as is sometimes the case. When pendants are to be fitted in the latter way, the same rules hold good, for the odd shroud and pendants spanned together go on the mast-head first. The odd shroud is fitted straight and passes over the bolsters from side to side abaft, as if it were an after-pendant, and the span is fitted as above described for double pendants. In small vessels, and when there is no odd shroud, the mizzen pendants are fitted with a cut splice, the cut eye to be one foot longer at each end than the eye for a shroud, with good seizings at the proper places. The eyes are purposely made too large to prevent injury to the splice in opening the eye.

To Measure for No. 1, or First Pair of Shrouds. These comprise the swifter and next shroud, or, as called by riggers, “forward leg” and “after leg,” and they go over the mast-head next after the pendants and always on the starboard side.

The beam-scale, Figs. 285 or 287, being adjusted to the mark representing the half-beam of the vessel, minus half the diameter of the mast, place it on the draft just at the upper edge of channel at the dead-eye of the first shroud. Place one point of the dividers at the top line of trestle-tree near the forward side of mast-head and the other point on the beam-scale at the mark indicating the half-beam, apply the dividers to the rule and observe the number of feet and inches it gives according to the scale on which the draft is made; this will give the length of the forward shroud, or “forward leg,” of No. 1 pair, without the eye. Then proceed to measure for the next shroud or after-leg in the same manner, moving the beam-scale to the second dead-eye. There will be very little difference in the length of the two


100

first legs, and if any, the after leg will be a little shorter on account of the rake in the mast and the shroud being more perpendicular. Having the length of both legs of No. 1 pair of shrouds, take their sum and add five squares of the girth-measure of the mast-head, plus the diameter of the lower mast-head pendants, as the shrouds will “pile,” or rise, that much on the mast-head. This will give the extreme length of No. 1 pair.Having the rope on a stretch, hang it, with tricing lines at short intervals to prevent sagging. Commence measuring from a mark near the strap on the end, the length of the forward leg. Then continue along to measure five square of mast-head, being careful to leave at the centre (which will be the centre of eye) a special mark, usually a long strand. Then measure and mark the after-leg, and in the same manner measure and mark all the other shrouds, not forgetting to add for the second pair of shrouds twice the diameter of a finished eye; for the third pair three times the diameter, &c., as each succeeding shroud must “pile” that much in rising above the others on the mast-head. The first pair of shrouds, or No. 1, being on stretch, measured and marked, worm it and paint from end to end with red lead and boiled oil, being particular to fill well in the lay. Over the worming parcel with new cotton sheeting. In putting on this parcelling commence from the end of each leg, working towards the centre of eye. The parcelling should be so put on that the rope will be protected with two thicknesses at every point; now paint again over the parcelling, and serve from end to end with spun yarn, commencing to serve from the centre and serving in the opposite way to which the parcelling was put on. Measure off from the centre mark each way the half eye (the half of the five square), which gives the place for the upper turn of the eye seizing. Start two feet below these eye-seizing marks, on each leg, and parcel with tarred flax canvas to the centre of eye, and serve over with roundline. Double serve the end of each shroud from the place of the quarter-seizing for its dead-eye. Now let down the shroud and saw off; bring the two ends together and break the eye around till the two eye-seizing marks come firmly together. Mark one foot below the eye-seizing on each leg, and with strong flax parcelling put on the heading, which is just the same as parcelling, always commencing below and working up to the centre on both legs so that the edge of the “heading” will overlap and form a “shingling,” which it is often termed. Use the selvage edge of parcelling stuff for shingling, leaving the selvage out; this makes smooth work that will not fray out. Secure the heading in place by marline hitches, which should be on top not more than one-half inch apart, leaving a space for the eye-seizing without hitches.

101

Should there be an odd shroud in the fore or main rigging, it is fitted with an eye-splice, and goes over the masthead last, the eye to be spliced one foot longer than the eye of a pair of shrouds, and seized together above the splice so as to have the same size as it would have if of a pair; the eye to be double served and headed in the same manner as all the others.Mizzen Rigging is fitted in the same manner as the fore and main, excepting in the case of an odd shroud, which is fitted “straight,” passing over across the masthead abaft and forming one leg on each side, being spanned at the mast-head with the pendants, of which the mizzen has in this case but one on each side. In large ships the mizzen lower mast-head pendants are often fitted with four legs, in the same manner as is the fore and main.

Sword mats are substituted for service on the swifters (forward shrouds) of lower rigging.

Bowsprit Rigging. Bobstays are now made of iron chain shackled into the cutwater and set up with four score hearts. To find the length of bobstays, measure from the band under the bowsprit at the place prepared for the upper heart, to the bolt or link in cutwater, then find the number of feet and inches the two hearts will occupy and the drift of laniard, add together and subtract the sum from the extreme length; the remainder will be the length of the chains required for the bobstay. Care should be taken that the bobstays have the same drift of laniard, as it adds to the trimness of the head gear.

Bowsprit Shrouds are fitted of wire and lead well down on the bows, shackled to eye-bolts and set up with three scored hearts. To find the length by draft, measure from the band on bowsprit at the place marked to the place in the bow, and from the extreme measure deduct the drift of laniard and one heart. The reason of but one heart being deducted, is that the measure of the other allows for the “carry out” of the shroud. Too much care cannot be taken in fitting the gear and securing the bowsprit, as it not only has all the head booms to support, but in a great measure the foremast with its topmast and topgallant mast, together with the main topmast and topgallant mast.

Fore Stays are fitted with lashing eye collars and set up with laniards and four score hearts. Measure for fore stays from the after-side of foremast head, about one foot above the trestle-trees, to the place where the lower heart is to be.

To form the collar of the stay, allow, in cutting, for twice the length of the intended collar.

When cut, unlay one-half (three) of the strands to the mark for the crotch of the collar, keeping each set of strands together. One of the sets will contain the


102

heart. A heart must be laid in with the other three strands.Form the eye in each leg of the collar by turning back the strands and working two of them down to the crotch. The third strand of each set is spliced around the eye and the surplus end cut off.

We then have each leg formed of five strands; each eye formed of three strands.

The length of the collar is usually equal to the length of the mast-head, but may be reduced if necessary to keep the fore yard, when sharp up, from taking against the collar.

Paint, worm, parcel and serve with spun-yarn, parcel again with flax, and double serve with round-line; fid out each eye and insert a strong hard-wood toggle. Get the stay on stretch by lashing the toggles to posts four or five feet apart, get a strong tackle on the end, heave it up straight and trim the splices. Paint, worm, parcel, paint again, and serve with spun-yarn from end to end, being careful to have a good piece of parcelling laid through the crotch to shed the water. Then, from four feet below the crotch, parcel with tarred flax parcelling to eyes of collar, and leather over the parcelling, serving over the ends of the leather and over the splices. Having both stays double served and leathered, place one over the other, being careful to keep the crotches fair and even. Then seize both stays together with one good heavy seizing close up to the crotch, and smaller ones at every two feet along the collars. Parcel and leather over the seizings. Double serve the ends of fore stays to eight feet above the nip around the thimble.

Main Stays are fitted in the same manner as fore stays, excepting the double service on end, which is only from quarter seizing around thimble to end. Sometimes if the smoke-stack, when up, is near the stays, a piece of chain is shackled into the stay just over the stack. The main stays generally set up with four scored hearts, the lower heart being secured to iron straps made for the purpose, one on each side of the foremast. The iron rods or straps lead down to the berth deck, frequently passing through the bitt standards and setting up with a nut on the forward side.

Mizzen Stays are always single, with the collars fitted and lashed, same as fore or main stays. On some vessels the end is split into two legs to admit the main trysail mast, and each leg fitted with a thimble to set up by laniard to bolts on each side of main-mast. On others the end is turned up around a thimble and set up with three score hearts to the after-side of main-mast.

The ends of all stays turn up under the standing parts.

The ends of all shrouds turn up inside the standing parts.

Futtock Shrouds are made of rod iron set up with turn-buckles. The required lengths are best obtained


103

by actual measurement after the top is on. In small ships futtock shrouds are rattled down. Futtock shrouds are set up independently to the top rim, and not to the plates of the topmast dead-eyes. The lower ends secure to the futtock band.NOTE.-In the above measurements for shrouds it is assumed that by measuring from the place of the lower dead-eye, on the channel, enough allowance is made for turning up the shroud around the thimble of the upper dead-eye. But if the drift of the laniard added to the diameter of both dead-eyes does not allow enough shroud to turn up, extra length must be added for that purpose to each measurement taken.

The amount allowed for turning up is six feet for the forward shroud of large rigging, a proportionately smaller amount for smaller rope. After shrouds have somewhat more turn up than forward ones, in order to bring the ends themselves parallel to the sheer.

Upper dead-eyes are usually in line with or below the rail.

When lower rigging has been set up for some time, or after a ship has experienced heavy weather, it will be found that the shrouds will not lie exactly above one another, but settle, the necks of the eyes working partly inside of each other. The effect is to slacken the rigging, particularly the after shrouds, which settle most, and which may require turning in again to keep the dead-eyes in line, a difficult operation with wire rope. If the allowance for piling were two-thirds of a diameter of the shrouds, instead of a whole diameter, as at present, it is believed that much of this inconvenience could be avoided, although a few of the after dead-eyes might not come quite to their places when the shrouds are first set up.

Topmast Rigging. To measure for topmast shrouds from the scale draft, proceed on the same principle as for lower shrouds. Set the beam scale to one-half the spread of the top from the side of the mast, allowing for the rounding of the top; place the beam scale on the draft abreast of the proper dead-eye, and measure the distance with dividers from the top of the sliding rest to the top of the trestle-tree. Add for each pair the spread of the trestle-trees, and make the usual allowance for turning up from the nip of the dead-eye thimble.

Topmast rigging is fitted in the manner known as “straight,” with one eye formed out of two pairs of shrouds, which gives two “lifts” or thicknesses on the mast-head, with four shrouds on each side, making a snug and neat mast-head.*

* This answers very well for ships intended to do most of their cruising under steam; but cannot be recommended when sail is to be carried to any extent. All the strain comes on the seizing.


104

It should be painted, wormed, parcelled, painted again, and served the entire length. The shrouds double served from centre of eye to three or four feet below the futtock-staff. The length of heading from centre of eye down to one foot below the eye-seizing is put on the same as for the lower rigging.Catharpins are of wire rope, wormed, painted, and parcelled, and double served throughout; fitted with eyes in each end, and go abaft the mast and seize together in the centre.

The topmast-head (burton) pendants are wire rope, fitted with a shackle in one end and a link in the other; the shackle connecting to a link under the trestle-trees. Each topmast has four pendants, two forward, and two abaft the rigging. The lower ends of pendants hang six inches below the catharpin legs.

Pendants are fitted the same as topmast rigging, without double service, except around their thimbles.

Sword mats are substituted for double service on the swifters of topmast rigging.

Topgallant Shrouds. The easiest way to measure for length of topgallant shrouds is to draw a figure to scale, showing the top, the position of the futtock-staff, and position and spread of cross-tree. Measure on that draft from the topgallant mast-head to the horn of the cross-tree, thence to futtock-staff and into the top, where the shroud sets up. Allow for each pair enough for a neat eye around the funnel, and ends for turning up.

The shrouds are painted, wormed, parcelled, painted again, and served the entire length, and go over the funnel on the mast-head. They are fitted in pairs, with eyes formed like the eyes of lower rigging, and seized so as to fit snug over the funnel.

The forward legs are double served from the centre of eye to one foot below the futtock-staff of topmast rigging; the after leg is double served from centre of eye, three feet down; then from a point one foot above cross-trees to one foot below the futtock-staff: both legs are leathered in the wake of cross-trees, and set up in the top with dead-eyes.

Royal Shrouds, Stays and Backstays. Measure for each to where it leads and sets up, allowing enough end to turn up in the wake of the thimble.

Fore.-Are painted, wormed, parcelled, painted again, and served the entire length, and fitted to an iron funnel or band, which has three eyes at equal distances apart, one on each side and one forward. The shroud and backstay are one piece, rove through a side eye of the band and seized around a thimble there. Double service one foot down on the shroud and backstay from centre of eye, double service on the shroud, leathered in the nip of the jack. The stay is spliced around a thimble on the forward eye of the band


105

double served and leathered in the nip of the flying jibboom, in the clamp on the dolphin striker, and also where it reeves through the bees on the bowsprit.Royal shrouds set up in the top with a purchase; stays and backstays with dead-eyes.

Main.-Fitted and set up the same as the fore; double service and leathered at the nip of the chock in the fore-topmast trestle-trees.

Mizzen.-Fitted and set up the same as the main; double service and leathered at the nip of the chock in the main-topmast cross-trees.

Fore-topmast Stays. Measure from after part of topmast-head to the bees, thence to place of setting up; make allowance for turning up. They are fitted separate; single service throughout; collars the same as fore and main; double service from ten feet above the bowsprit to one foot inside of the leader under the bees; leathered over double service from four feet above the bees to eight inches inside the leader, under the bees. Set up with three-scored hearts.

The service on the port (spring) stay is omitted in the wake of the stay-sail hanks.

Jib Stay. Measure from after part of topmast-head to where it leads and sets up. To be fitted like fore-topmast stays, with split collars, lashing-eyes, &c.; served from four feet above the boom to the end where it sets up; double service and leathered in the nip of the clamp on the dolphin-striker, and also where it goes through the bees, leathered over the surface from four feet above to eight inches below the boom; collars of jib and topmast stays seized together below the crotch around the stays, seizings parcelled and leathered. Set up with three-scored hearts.

Main-topmast Stays. Measure and fittings similar to fore-topmast stays; in long ships, with great distances between fore and main masts, they may be brought directly to the deck near the foremast;* but in short ships they pass through chocks between the fore trestle-trees, and. set up on deck with three-scored hearts. Nips double served and leathered; collars seized together in the loft.

Mizzen-topmast Stay. Measure and fittings similar to main-topmast stays, and set up in the main-top with three-scored hearts.

Fore-topgallant Stay. Measure to where it leads and sets up, allowing for neat eye-splice around funnel. Painted, wormed, parcelled, painted again, and served the entire length; double served on the eye around the funnel, and from twelve feet above to one foot below the jib-boom; also in the wake of the nip of the clamp on the dolphin-

* It would be better if this lead could be adopted in all ships, but the smokestack frequently interferes.


106

striker, and where it reeves through the bees, or leader under the bees. All nips to be leathered. Stay set up with dead-eyes.Main-topgallant Stay. Measure and fit like the fore, and set up with dead-eyes in the fore-top. Double served and leathered at the hole in the fore-cap through which it leads, also leathered about three feet below the crotch of the eye-splice.

Mizzen-topgallant Stay. Measure and fit as above. Served, leathered, and led through a hole in the main-cap and set up in the main-top.

Flying-Jib Stay. Measure and fit with an eye-splice, similar to topgallant stay. Double served; served and leathered three feet below the crotch of splice, in all other respects fitted like the jib stays. Set up with dead-eyes.

Jib Guys are of wire rope, painted, wormed, parcelled, painted again, and served the entire length; double served and leathered in the wake of whiskers, over which they fit with horseshoe cringles; outer ends shackle to a band on the boom end; set up to the bows, or cat-head, with three-scored hearts.

Flying-Jib Guys are of wire rope, fitted, set up to the bows, or cat-head, with three-scored hearts, and connected with the boom, same as jib guys; reeve through thimbles in a strap out on the whisker yard-arms. Double served and leathered in the nip of the thimbles.

Whisker-Jumpers are of wire rope; painted, wormed, parcelled, painted again, and served throughout; fitted with an eye-splice, double served and leathered, to fit over the whisker-boom end; the inner end leathered in the nip, and set up on its own part through a bull’s eye connected to a bolt on the cut-water.

Back Ropes are fitted of hemp, served throughout, hooked or shackled to the dolphin-striker, and set up at the bows with three-scored hearts.

Jib Martingale-Stay is of wire rope, wormed, parcelled, and served the same as guys. Fitted with shackles and thimbles in each end, with double service around the thimbles. Shackles to the dolphin striker and to the band on jib-boom.

Flying-Jib Martingale-Stay. Fitted the same as the jib martingale, of wire; double served around the thimbles in the outer in the wake of the sheave on the dolphin-striker, and where it reeves through the bees, or leader. Sets up with dead-eyes.

Fore and Main Topmast Backstays. Fitted and measured off the same as the after-shrouds of the fore and main rigging.

Mizzen-Topmast Backstays are fitted with horseshoe eyes, or, properly speaking, a span. Measured like the fore and main.


Plate 45, Fig 287-289. Deadeyes.
Plate 46, Fig 290-291.  Splicing bench.

107

Fore, Main, and Mizzen Topgallant Backstays are painted, wormed, parcelled, painted again, and served throughout. Fitted with spliced eyes, which are double served, without outside parcelling. Measured from the funnel to the place of setting up in the channels, with allowance for the eye and the usual allowance for turning up.For the rules for finding size of shrouds, see Appendix C.

Boat-Davit Topping Lifts, Spans and Guys, are of wire rope, and served throughout. Spans to which topping-lift pendants are attached are leathered in the middle.

Dead-Eyes. The dead-eye now used in the Navy is shown in Fig. 288. Plate 45.

The end of the shroud passes around a heavy iron thimble, which is confined by a pin to the lugs of the iron strap of the upper dead-eye.

Dead-eyes are made with one hole without a score on the inboard face, the edge being left square so as to present a solid shoulder to the knot of the laniard.

The shroud being passed around the thimble is secured by five seizings-throat, quarter, middle, upper and end seizing.

The two lower turns of the throat seizing are racking turns, over these come riding turns. The seizing is crossed and hitched in the upper part.

The quarter, middle and upper seizings are riding seizings.

The end seizing is flat, crossed and hitched, and holds into place the canvas cap placed over the ends of all standing rigging.

Lower dead-eyes connect with the chain plates by bolts, so as to be readily unshipped. The bolts are fitted with forelocks.

In setting up stays and some other portions of the standing rigging, scored hearts are used instead of deadeyes. These hearts have iron straps, and the upper ones are supplied with iron thimbles similar to those around which a shroud is taken. Fig. 289, Plate 45.

Care must be taken in turning the ends of shrouds or stays around their thimbles that it is done properly, as, in the event of a change becoming necessary, it is difficult to get the old nip out of the wire.

All wire rigging in the Navy sets up with hemp laniards, which impart all the “give” necessary.

Topmast rigging of fore and aft vessels may be set up on end.

For turning in old-fashioned dead-eye, see Appendix C.

The Splicing Bench, Fig. 290, Plate 46. For convenience in handling wire rope, some rigging lofts are supplied with splicing benches, which are large tables of hard wood, plated with iron on the top and sides.


108

The top of the bench is pierced with holes, into which may be set steel standards or “normans,” by which the rope is steadied on a stretch. Similar holes are made in the sides of the table to receive smaller pins.In splicing, for instance, a link and thimble into a large wire rope, the rope itself is steadied between two normans at opposite ends of the bench. A hook, fitted with a ring which slips over the norman head, is hooked into the link of the thimble around which the rope is to be spliced.

When a strand has been stuck once, a small chain strap, Fig. 291, Plate 46, with a ring in the chain end and tailed with manilla rope, is clapped on to the strand. The strap leads off to the side of the bench in the direction to be taken by the strand. The rope end of the strap is there taken around one of the projecting pins and hove upon, by converting the pin into a Spanish windlass.

A like purchase is used on every strand after sticking, varying only the lead of the strap. As the sides and top of the bench are pierced with suitable holes, the lead of the strap can be changed in a moment by shifting the position of the pin used.

In Fig. 290, some strands are omitted to avoid confusion.

turning in machine for wire rope, Fig. 292, Plate 47, is supplied in rigging lofts and aboard ships to shape wire rope when turning in thimbles, or wherever it is required to make a short nip.

In splicing wire rope proceed as with hemp, sticking once whole, once two-thirds, and once one-third; get it on a good stretch and break off the wires close to the rope by working them quickly backwards and forwards.

In splicing an eye with more than three strands, the second left-hand strand is tucked from right to left under the first convenient strand.

Take the precaution when the marlinespike is entered under the strands where you wish to put in the first tuck, to beat the strands on either side of the spike with a hammer, so as to keep them open until the strand is entered.

To splice a thimble in wire rope. Red lead, parcel and serve the rope in wake of the thimble. Break the rope around the thimble, stop the parts together, pass seizings around the rope and through the thimble to hold the latter in place. Then open out and splice.

Besides the marlinespike; pincers, files, cold chisels and saws are useful in the manipulation of wire rope.

Metallic Splices. A new method of splicing wire rope is being introduced by which the end of the wire rope is inserted into a metallic socket and there secured by pouring a strong fusible metal around it, filling all the spaces in and around the rope, and forming a solid and firmly united structure.


109

The sockets may be terminated by any kind of device commonly used in connection with wire rope. A round-eye socket is used to replace the eye-splice around a thimble, and similarly sockets with bull’s-eyes, sister-hooks, or deadeyes are made for use in connection with this process of splicing.

Metallic splice.

In the figure is shown a longitudinal section of a round eye socket, showing an arrangement of inside notches into which the filling metal sets, increasing the strength and safety of the splice.

This method of splicing has been favorably reported upon, the results of tests showing that the patent splice is stronger than the common splice, and stronger than the rope itself; also that it is durable, more quickly and economically made, and that it presents a neater appearance.

To make the Metallic Splice.

First, Measure the depth of socket and cut the same length from the hemp heart of the rope.

Second, Have a sufficient quantity of filling metal being melted.

Third, Insert the end of rope into the socket, and hold it in a horizontal position over a strong heat until a piece of the filling metal will melt when held on the upper side of socket, and until the rope becomes too hot for the hand at three inches distance from the socket. Have the filling metal hot enough to ignite a shaving or piece of paper when brought in contact with it.

Fourth, Place the splice with the rope inserted in an upright position and pour the socket full, and let it remain in position until cool, when it is ready for use.

The Kind of Filling to Use. Pure tin, or a compound of half lead and half tin, or the latter compound with two per cent. of antimony added.

The following tests of the metallic splice were made at the Watertown Arsenal, August 22, 1881:

 

SOCKETSSTEEL WIRE ROPEULTIMATE STRENGTH.
Malleable IronTwo inch20,900 lbs.
Three inch45,700 lbs.
Four inch73,000 lbs.

The rope was broken in every case and the splices were uninjured.